|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?注册
×
人们在使用SQL时往往会陷入一个误区,即太关注于所得的结果是否正确,而忽略了不同的实现方法之间可能存在的性能差异,这种性能差异在大型的或是复杂的数据库环境中(如联机事务处理OLTP或决策支持系统DSS)中表现得尤为明显。笔者在工作实践中发现,不良的SQL往往来自于不恰当的索引设计、不充份的连接条件和不可优化的where子句。在对它们进行适当的优化后,其运行速度有了明显地提高!下面我将从这三个方面分别进行总结:(为了更直观地说明问题,所有实例中的SQL运行时间均经过测试,不超过1秒的均表示为(< 1秒)。 ) 一、不合理的索引设计 例:表record有620000行,试看在不同的索引下,下面几个 SQL的运行情况: 1.在date上建有一非个群集索引 select count(*) from record where date > ''19991201'' and date < ''19991214''and amount > 2000 (25秒) select date,sum(amount) from record group by date (55秒) select count(*) from record where date > ''19990901'' and place in (''BJ'',''SH'') (27秒) 分析: date上有大量的重复值,在非群集索引下,数据在物理上随机存放在数据页上,在范围查找时,必须执行一次表扫描才能找到这一范围内的全部行。 2.在date上的一个群集索引 select count(*) from record where date > ''19991201'' and date < ''19991214'' and amount > 2000 (14秒) select date,sum(amount) from record group by date (28秒) select count(*) from record where date > ''19990901'' and place in (''BJ'',''SH'')(14秒) 分析: 在群集索引下,数据在物理上按顺序在数据页上,重复值也排列在一起,因而在范围查找时,可以先找到这个范围的起末点,且只在这个范围内扫描数据页,避免了大范围扫描,提高了查询速度。 3.在place,date,amount上的组合索引 select count(*) from record where date > ''19991201'' and date < ''19991214'' and amount > 2000 (26秒) select date,sum(amount) from record group by date (27秒) select count(*) from record where date > ''19990901'' and place in (''BJ, ''SH'')(< 1秒) 分析: 这是一个不很合理的组合索引,因为它的前导列是place,第一和第二条SQL没有引用place,因此也没有利用上索引;第三个SQL使用了place。 4.在date,place,amount上的组合索引 select count(*) from record where date > ''19991201'' and date < ''19991214'' and amount > 2000(< 1秒) select date,sum(amount) from record group by date (11秒) select count(*) from record where date > ''19990901'' and place in (''BJ'',''SH'')(< 1秒) 分析: 这是一个合理的组合索引。它将date作为前导列,使每个SQL都可以利用索引,并且在第一和第三个SQL中形成了索引覆盖,因而性能达到了最优。 5.总结: 缺省情况下建立的索引是非群集索引,但有时它并不是最佳的;合理的索引设计要建立在对各种查询的分析和预测上。一般来说: ①.有大量重复值、且经常有范围查询 (between, >,< ,>=,< =)和order by、group by发生的列,可考虑建立群集索引; ②.经常同时存取多列,且每列都含有重复值可考虑建立组合索引; ③.组合索引要尽量使关键查询形成索引覆盖,其前导列一定是使用最频繁的列。 二、不充份的连接条件 例:表card有7896行,在card_no上有一个非聚集索引,表account有191122行,在 account_no上有一个非聚集索引,试看在不同的表连接条件下,两个SQL的执行情况: select sum(a.amount) from account a, card b where a.card_no = b.card_no(20秒) 将SQL改为: select sum(a.amount) from account a, card b where a.card_no = b.card_no and a. account_no=b.account_no(< 1秒) 分析: 在第一个连接条件下,最佳查询方案是将account作外层表,card作内层表,利用card上的索引,其I/O次数可由以下公式估算为: 外层表account上的22541页+(外层表account的191122行*内层表card上对应外层表第一行所要查找的3页)=595907次I/O 在第二个连接条件下,最佳查询方案是将card作外层表,account作内层表,利用account上的索引,其I/O次数可由以下公式估算为: 外层表card上的1944页+(外层表card的7896行*内层表account上对应外层表每一行所要查找的4页)= 33528次I/O 可见,只有充份的连接条件,真正的最佳方案才会被执行。 总结: 1.多表操作在被实际执行前,查询优化器会根据连接条件,列出几组可能的连接方案并从中找出系统开销最小的最佳方案。连接条件要充份考虑带有索引的表、行数多的表;内外表的选择可由公式:外层表中的匹配行数*内层表中每一次查找的次数确定,乘积最小为最佳方案。 2.查看执行方案的方法-- 用set showplanon,打开showplan选项,就可以看到连接顺序、使用何种索引的信息;想看更详细的信息,需用sa角色执行dbcc(3604,310,302)。 三、不可优化的where子句 1.例:下列SQL条件语句中的列都建有恰当的索引,但执行速度却非常慢: select * from record where substring(card_no,1,4)=''5378''(13秒) select * from record where amount/30< 1000(11秒) select * from record where convert(char(10),date,112)=''19991201''(10秒) 分析: where子句中对列的任何操作结果都是在SQL运行时逐列计算得到的,因此它不得不进行表搜索,而没有使用该列上面的索引;如果这些结果在查询编译时就能得到,那么就可以被SQL优化器优化,使用索引,避免表搜索,因此将SQL重写成下面这样: select * from record where card_no like ''5378%''(< 1秒) select * from record where amount < 1000*30(< 1秒) select * from record where date= ''1999/12/01'' (< 1秒) 你会发现SQL明显快起来! 2.例:表stuff有200000行,id_no上有非群集索引,请看下面这个SQL: select count(*) from stuff where id_no in(''0'',''1'')(23秒) 分析: where条件中的''in''在逻辑上相当于''or'',所以语法分析器会将in (''0'',''1'')转化为id_no =''0'' or id_no=''1''来执行。我们期望它会根据每个or子句分别查找,再将结果相加,这样可以利用id_no上的索引;但实际上(根据showplan),它却采用了"OR策略",即先取出满足每个or子句的行,存入临时数据库的工作表中,再建立唯一索引以去掉重复行,最后从这个临时表中计算结果。因此,实际过程没有利用id_no上索引,并且完成时间还要受tempdb数据库性能的影响。 实践证明,表的行数越多 |
|